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Symplectic and Nonsymplectic Realizations of Groups 
for Singular Systems. An Example 
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The actions of groups for singular systems are studied in the framework of the 
theory of canonical transformations for presymplectic systems. Symplectic realiz- 
ations as well as nonsymplectic ones arise in a natural way. As a typical example 
we construct the Poincar6 realizations for the relativistic free massive particle. 

1. I N T R O D U C T I O N  

The s tudy of  const ra ined dynamical  systems is a subject o f  interest 
because all the theories exhibiting gauge invariance are constrained.  In a 
previous work  (Carifiena et al., 19 8 5 ) the theory  o f  canonical  t ransform ations 
for  these systems was developed.  This theory  introduces  the concept  o f  an 
equivalence class o f  canonica l  t ransformat ions  and suggests s tudying the 
actions o f  Lie groups  on these systems in this f ramework.  

In this paper  we explain this me thod  briefly and we apply it to construct  
the Poincar6 realizations o f  a free particle. 

2. G E N E R A L  R E M A R K S  

Let us start by recalling the theory o f  actions o f  a Lie g roup  on 
a symplect ic  manifold  (Abraham and Marsden,  1978; Giachett i ,  1981; 
Carifiena and Ibort ,  1985). Let (P, [l)  be a symplect ic  manifold,  G a Lie 
group,  and  ~ its associated Lie algebra. We call an action of  the g roup  G 
on the mani fo ld  P a h o m o m o r p h i s m  ~b: G--> Diff(P) .  The act ion is said to 
be symplectic iff it preserves the symplect ic  structure f l ;  that  is, ~g*ll--l-l ,  
Vg ~ G. Then  we say that  G acts symplectical ly on P. Every act ion induces 
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a Lie algebra homomorphism X : ~  ~ ( P ) ,  by defining 

d 
Xg(f)(x):=-~f(exp{-tg}x)l ,=o,  Vx~P,  V f ~ C ~ ( P )  

Furthermore, if the action is symplectic, then X :  ~-~f~H(P),  where 
~ m ( P )  denotes the set of  locally Hamiltonian vector fields (1.H.v.f.) in P, 
and conversely. 

In recent papers (Gomis et al., 1984; Carifiena et aL, 1985) the theory 
of  canonical transformations (c.t.) for presymplectic systems has been 
developed. Thus, let (C, to) be the final constraint submanifold (f.c.s.) of a 
constrained dynamical system, and (P, fl) an ambient (symplectic) manifold 
where the f.c.s, is embedded (which could be the "initial phase space" of 
the system or not). 2 Then a canonical transformation for such a system is 
defined as a pair of  diffeomorphisms (~b, q~), where r is identified with a 
presymplectomorphism on the f.c.s, of  the dynamical system, 3 and 4) is any 
extension of r to P. Now, an equivalence relation is established in the set 
of  these c.t.: two c.t. are related iff they have the same restriction q~ on the 
f.c.s. Then it is proved that there exists a representant of each equivalence 
class of  c.t. such that ~b is a symplectomorphism in P. In addition, the set 
Ker w := {Z ~ ~(c)li(z)to --  0} is closed under the Lie bracket operation 
and then generates a foliation Fo, of C. The quotient space C:=  C/F~ 
inherits a symplectic structure l'l c Z2(C) from (C, to) [we assume (C, to) 
is a sufficiently nice manifold to assure that C has, in turn, the structure 
of  a differential manifold (Lichnerowicz, 1975)]. Therefore, it can be proved 
also that all the c.t. belonging to the same equivalence class [ ~ ] r e d u c e  to 
a unique symplectomorphism ff in the symplectic manifold (C, fl). 

Next we can study the action of Lie groups for presymplectic systems, 
using the previous ideas. If (C, to) is a presymplectic manifold, we say 
q~ : G--> Diff(C) is a presymplectic action iff to is q~-invariant; that is, q~*to = to, 
with ~pg := ~(g) ,  Vg ~ G. Since this is equivalent to L(Xg)to = O, Vg ~ G, we 
have that every presymplectic action induces a Lie algebra homomorphism 
X : ~ ~jH(C), where 

~IH(C) := { Y~ ~ ( C )  [ i( Y)to c Z ' (C )  (closed one-forms)} 

is the set of  presymplectic 1.H.v.f. in (C, to) (Gomis et al., 1984). The 
connection with the theory of  c.t. is carried out using the fact that a vector 
field in C is a presymplectic 1.H.v.f. if and only if its flux generates an 
uniparametric local group of  diffeomorphisms which are presymplecto- 
morphisms of (C, to) (Carifiena et al., 1985). In addition, it can be proved 

2That is, (P, C, ~ )  is a regular canonical system in the terminology of  Sniatycki (1974). 
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that every presymplectic action of G in C reduces to a symplectic action 
of G in the symplectic manifold (t~, ~).  

On the other hand, if (P, C , ~ )  is a regular canonical system, the 
immediate application of the theory of c.t. for constrained systems leads 
one to define the action of  the Lie group G on the system (P, C, 1)) as a 
pair of diffeomorphisms (~b, ~), where & and ~ are actions of G in P and 
C, respectively, and such that 

~bg ~  = j c  ~ ~g, V g  ~ G 

where Jc : C ~ P is the embedding of C in P. In an analogous way as for 
the set of c.t. of  the system (P, C, 1)), an equivalence relation is established 
in the set of actions of  G in (P, C, 1)). Moreover, if q~ is a presymplectic 
action in C, then, among all the elements (4~i, q~) pertaining to the 
equivalence class [~],  a representative (O, ~p) can be chosen such that 
is a symplectic action in P. In any case, all the actions belonging to the 
same equivalence class [q~] reduce to the same (unique) symplectic action 

in the reduced manifold (C, ~).  

3. AN EXAMPLE: THE RELATIVISTIC FREE PARTICLE 

Now we apply these results in order to construct the Poincar6 realiz- 
ations of a free particle (with mass m). First we describe the geometrical 
characteristics of the system [a more detailed discussion can be found in 
Carifiena et al. (1987). 

The configuration space Q of this system is the Minkowski space. Then 
the momentum phase space T*Q is an eight-dimensional manifold with 
local coordinates (q~, p~),/~ = 0, 1, 2, 3, which is endowed with the natural 
symplectic form 1) = dq ~ ^ dp~. The f.c.s, is the submanifold j s  : S ~  T*Q 
locally defined by the constraint ~ = p~p~  - m 2, which can be written in the 
form ~ = Po ~= (PiP i + m 2) 1/~ (i = 1, 2, 3) and it makes clear that S is the union 
of two disconnected components,  S = S - u  S § Each one inherits from 
( T ' Q ,  ~ )  a presymplectic structure, locally given by 

= ( " ) w = ~ ( p k p ~ + m 2 ) u 2 d q ~  i ^ d p i  

The generalized Darboux theorem (Abraham and Marsden, 1978) 
assures that in S there exist sets of "presymplectic coordinates" (3", fi~) 
such that 

and it is also possible to complete these sets in such a manner that  ( ~ ,  ~ )  
are local sets of canonical coordinates in (T*Q,f~).  A transformation 
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~b: (q~', p . )  --> (q~,/Jr) giving this change explicitly is (Dominici et aL, 1981) 

(q,.~o)= = qO, (O.~o)~=poq:(p,pi+m2),/= 

qOpi (3.1) 
(~*qi)~-:qizh(Pkpk+m2)l /2,  (0*t~0)~ = p, 

Besides (T 'Q ,  D), another ambient symplectic manifold (P, 12p) con- 
taining (S, to) can be constructed by applying the coisotropic embedding 
theorem (Gotay, 1982; Made, 1983). Since S is the union of the two 
disconnected components S-  and S +, we have that this ambient manifold 
is made also of two symplectic components denoted (P- ,  ~p)  and (P+, D~.). 
As local sets of symplectic coordinates for (P, lip) ~ we take (~',/3~.) ~, and 
then the relations (3.1) are also explicit expressions of the local symplecto- 
morphism 0: (T 'Q ,  D)--> (P, D , )  ~ connecting both canonical systems. 

4. REALIZATIONS OF THE POINCARI~ G R O U P  FOR THE 
FREE PARTICLE 

In order to give a realization of the Poincar6 group for this dynamical 
system, we proceed in two steps: first we give a realization in the f.c.s. (in 
particular, on each component) and afterward we extend it to the ambient 
symplectic manifold. 

Let us start by studying the realizations in the component (S-, to-). 
The infinitesimal generators of the Poincar6 group have to be represented 
by a presymplectic 1.H.v.f. and this implies that the functions M~,  P~ 
C~176 ) have to be presymplectic locally Hamiltonian functions for those 
fields, that is, 

i (X~)to-  = dM~ 
(4.1) 

i( Y~)w-  = dP~ 

It is proved (Gomis et aL, 1984; Cari6ena et aL, 1985) that the necessary 
and sufficient condition for a system like (4.1) to have solution is that the 
presymplectic locally Hamiltonian functions M~,  P~ must be invariant 
under the action of Ker to-. This condition is locally equivalent to demand- 
ing that the presymplectic locally Hamiltonian functions cannot depend on 
the "gauge coordinates," in this case {~o}. 

The form of the presymplectic coordinates, as well as physical consider- 
ations, suggest we take the following natural realization in (S-, to-): 

Mj = ~ '/3j - qj/~', P, =/~, 

M~o=q'(~6k~k+m2) '/= ' po = (/3k/3k + m2) '/2 
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We can observe that in the reduced manifold (S-, f~-) and referred to the 
o A o local chart of symplectic coordinates (~i,/~), such that ~i = ~ p,/5~ =p~ p, 

(where p: S - ~  S-  is the projection), this realization reduces to 

= q p2 - qjp , P, = p, 
~ i M o = ~ i ( ~ k ~ k + m 2 )  1/2 ,  p o = ( ~ k ~ k + m 2 )  1/2 

which, as can be observed, is closed under the Poisson bracket {,}fi and 
hence it is a symplectic realization of the Poincar6 group in (S-, ~- ) .  Now 
we want to extend the realization to the ambient symplectic component 
(P- ,  f ~ ) .  It is performed by taking the extended generating functions 
(Carifiena et al., 1985) 

~ ' -  M~+~.~s r 

~,~ := P,~ + fi.~" 

where**" ^ ~ P-  )t ~, ~7~ c C (_ ) are arbitrary functions and M~, P .  e C ~ ( P  ) are 
extensions of M~,  P. to P- .  Therefore, in (P- ,  f ~ )  we obtain the following 
family of equivalent representations: 

= 

~io= 4'( f ikf ik+ m2)'/2+ ~.~(t~ '*,/3~)fio 

~i = Pi + rh(q , P~)Po 

= + m = ) ' / = +  

whereas in the original ambient manifold (T*Q, I~ )  and referred to the 
chart (q~*, p~), we have, taking into account (3.1), 

~ =  ( q i +  q O p i ' ~ ( q j q ( p k p k ~ - m 2 ) l / 2 ) p i  (pkpk + m 2) ,/2: P; - 

i p .  i + A~(q , P~)[Po-(P~P + m2) ~/2] 
q,pj -- qjpi i I,~ i = " +h2(q ,P,,)[Po-(P~P +m2)  ~/2] ( qOp, ) 

J/t~o = q~ +(pkpk  +m2)~/2 (Pkpk +m2)  ~/2 

i ~t + Ao(q , P~)[Po- (P~P~+ m2)1/2] 

~ = p~ + rh'(q", P , ) [Po-  (P~P~+ m2)1/2] 
Y'o = (p~pk + m 2) ,/2+ ~ ~.,~ ,totu , P~)[Po (P~P~ + m2) ~/2] 

The functions ~ ,  ~ are not a closed set under the corresponding Poisson 
bracket, because of the arbitrariness of the functions a~,  rh,. This means 
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that the elements of this class of  equivalent representations of  the Poincar6 
group are not, in general, symplectic actions in ( P - ,  Ft~) or in ( T ' Q ,  f~). 
Nevertheless, we can always choose the arbitrary functions in such a manner 
that the corresponding representation is a symplectic action. In fact, if we 
take 

A, ~ i  ~o/~i 

~j=0, x0: (f~f~ +m~),/~ 

~ i  = O ,  T~O = 1 

or, equivalently, 
i i i hj = 0, ho = q 

r/i = O, "qo = 1 

the symplectic realization (in the original coordinates) is 

~ j  = q i p j  _ qJP i, ~i = Pi 

= q Po-- qOP , ~0=P0 

which is the standard kinematic realization of the Poincar6 group for the 
free particle (Dirac, 1949; Sudarshan and Mukunda, 1974). 

In an analogous way we construct the realizations starting from 
(S+, o~+). 

5. CONCLUSIONS 

Summing up, starting from a natural representation which is a presym- 
plectic action of a group in the f.c.s, of  a constrained dynamical system, 
we can extend it to any ambient symplectic manifold of  this submanifold. 
This extension is not unique and we actually obtain a large family of 
equivalent representations which are not necessarily symplectic actions, 
although in every equivalence class the existence of a Unique representative 
which is a symplectic action is assured. 

It is evident that in the set of equivalent representations the more 
interesting one is just this symplectic action (for instance, in order to perform 
the geometric quantization of the system). In relation to this topic, a very 
extensive analysis of the free particle can be found, for instance, in Souriau 
(1970) and Simms and Woodhouse (1976). 
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